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The theory and computational techniques used in a computer program capable of
performing fully relativistic ab initio electronic structure calculations for pairs of
interacting atomic species are presented. If the species are ions in a crystal, a
description of an ionic solid is obtained. If the two species are otherwise free, the
program yields a wavefunction for a diatomic molecule. The molecular wavefunction
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72 C.P. WOOD AND N.C. PYPER

is an antisymmetrized product of core and valence parts. The core is a Hartree
product of the Dirac-Fock atomic orbitals of the free atoms. The largest contribution
to the energy arises from the inner-core orbitals, each having negligible overlap with
all other orbitals. The purely atomic inner-core energy does not contribute to the
binding energy of the molecule, thus obviating the need to calculate the largest part
of the molecular energy. The outer core consists of those remaining closed subshells
of the isolated atoms that are not significantly affected on molecule formation. All
the remaining orbitals, including at least the valence Dirac—Fock atomic orbitals of
the free atoms plus further atomic functions needed to describe charge density
changes upon molecule formation, are used to construct the valence wavefunction.
This can be constructed to take account of correlation between the valence electrons.
All atomic functions have central field form with the radial parts defined numerically.
This method of constructing the molecular wavefunction avoids the need for large
basis sets, ensures that the Dirac small components bear the correct relation to the
large components and avoids basis set superposition errors.

This program is used to initiate a non-empirical study of the properties of ionic
solids. The results show that these properties cannot be reliably predicted by using
free ion wavefunctions and that the Watson shell model for describing the non-
negligible differences between free and in-crystal ion wavefunctions is not satisfactory.
The results demonstrate the importance of inter-ionic dispersive attractions but show
that it is not satisfactory to neglect the part quenching of the standard long-range
form of these attractions arising from overlap of the ion wavefunctions.

1. INTRODUCTION

It is now well established that relativity significantly modifies the behaviour of even the valence
electrons in a heavy element (Rose et al. 1978 ; Malli 1983). These modifications are introduced
through two effects, called the direct and indirect relativistic effects (Mayers 1957; Rose et al.
1978). The indirect effect, absent from a one-electron atom, arises from the change in the
electrostatic potential experienced by a valence electron because the charge distribution of the
core electrons is modified by relativity. The direct relativistic effect, present even in a
one-electron atom, originates from the change in the dynamics of the valence electron itself,
arising because this is governed by the relativistic Dirac equation rather than by the
non-relativistic Schroédinger equation. This effect is appreciable for s and p valence electrons
(Grant 1970) in elements heavier than the third transition series. Furthermore, for such
electrons this effect is too large for the relativistic correction to their energies to be accurately
calculated by the first-order perturbation method (Pyper 19804, 1981) of taking the expectation
value over the non-relativistic orbitals of operators, such as the spin—orbit coupling, which
describe relativistic corrections. This perturbation approach only yields the leading relativistic
energy correction, which has order 1/¢% where ¢ is the velocity of light in atomic units, and
will therefore fail where relativistic effects are sufficiently large. Thus the first-order perturbation
treatment recovers less than one half of the relativistic correction to the energy of the 6p orbital
in the thallium atom (Pyper & Marketos 1981), and predicts only one third of this correction
for the 7s orbital in element 111 (Pyper 1983) where the non-relativistic eigenvalue of
—0.201 a.u.T is decreased by relativity to —0.420 a.u. The perturbation approach is even
unable to predict the expected negative sign of the substantial relativistic correction to the
energy of the 7p orbital in element 113 (Pyper 1983). Divergence difficulties prevent the

1 1 a.u. (atomic unit) = 1 hartree & 4.359828 a J.
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RELATIVISTIC INTERACTION ENERGIES 73

perturbation method from being readily extended to higher order (Pyper 1980), although this
is possible for the one-electron atom (Morrison & Moss 1980; Ketley & Moss 1983) which can
be treated entirely analytically.

The importance of relativistic effects in heavy elements coupled with the failure of
perturbation theory provide the motivation for developing calculations based directly on the
Dirac equation. The first and main object of this paper is to present the formalism and describe
the numerical methods used in the new computer program RIP (relativistic integrals
program), capable of performing fully relativistic ab initio calculations for diatomic molecules.
Very brief outlines of the formalism have been presented in preliminary studies by using RIP
of both (E113), (Wood & Pyper 19814) and ionic solids containing superheavy elements
(Wood & Pyper 1981 b), as well as in an investigation of the electron-gas method for calculating
interatomic potentials (Wood & Pyper 1981¢). The molecular wavefunction is constructed
from the Dirac—Fock atomic orbitals occupied in the constituent atoms augmented by further
functions needed to describe the modification of the atomic charge densities concomitant on
molecular formation. The second object of this paper is to describe the initial stage of a
non-empirical study of ionic solids containing the heaviest ions, which has been made possible
by the development of the RIP program. This stage reveals the inadequacies of present
descriptions of both the dispersion energy and of the modifications of the ion wavefunctions
induced by the crystalline environment. The refinements needed to rectify these two short-
comings to produce a trustworthy and physically sound description of ionic solids are described
in the companion paper (Pyper 1986), which is concerned entirely with ionic solids.

2. THE WAVEFUNCTIONS
(a) Wavefunctions and hamiltonian

The basic idea behind the RIP program is to express the wavefunction for the diatomic
molecule in terms of the Dirac-Fock atomic orbitals of the constituent atoms. These atomic
orbitals can be readily computed by using the Oxford Dirac-Fock program (Grant et al. 1980).
This approach is useful because the innermost orbitals of heavy atoms, which contain most of
the electrons, are scarcely affected by the formation of the molecule. This ‘frozen core’
approximation allows the wavefunction for the N-electron diatomic system to be written

[P (ry 0y ty)) = S&j/[|¢1f(’1 PO | Pop(Ppigs -+ Prpronge)
X ‘¢v<rnf1+nf2+1 ry)y (2.1)

where S is a normalization constant and ./’ is the partial antisymmetrizer that only inter-
changes coordinates between the sets (Fy ... F,51);, (Fupiiq - Fopionge) a0d (Pypiingory - T
|Df(Fy - Pup)> and  |DPop(Fpriyy - Pupiyngs)) are wavefunctions containing nf1  and
nf2 electrons respectively, for the cores of the atoms 1 and 2. These are taken to be single
determinants of the core Dirac-Fock orbitals of the isolated atoms.

_/nf1
@uptryrag)> = (1T b i7,0), (2.24)
. [nSf2
|¢2f(’nf1+1 rnf1+nf2)> = of (g '”2,@(’2,nf1+i)>)- (2.26)

10-2
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74 C.P.WOOD AND N.C. PYPER

Here |u, ;> is the ith core orbital for atom g, r, ; is the position vector of electron i with respect
to nucleus # and &/ is the antisymmetrizer. In (2.1) the quantity |®, (7, s pfos1--- F)> 1
an antisymmetric molecular wavefunction for the valence electrons that is constructed from
a set of relativistic orbitals not contained in either of the core functions (2.2). The number of
electrons to be included in the valence function is determined by the accuracy required. Thus
those electrons occupying open shells in the isolated atoms must be included, but the valence
function can be enlarged to encompass those outermost core orbitals of the isolated atoms which
are significantly affected by the formation of the molecule. The valence orbital set comprises
both the outermost core orbitals and the occupied valence Dirac-Fock atomic orbitals of the
isolated atoms, plus the further functions needed to describe the molecule.

Each of the orbitals used to construct the wavefunction (2.1) is taken to have the standard
central field form (Grant 1970) with respect to the nucleus on which it is centred. They
therefore carry the additional labels x and m, taking the form

md> = r 1 PB(’/L) Xx,m(e a¢ )
Iu,u,bK > " (iQB<r/L> X—K,m(/z?ﬂa /;Sﬂ))’ (23)

where Pg(r,) and Qp(r,) are radial functions centred on nucleus g and ¥, (0, ¢/&) is a
vector-coupled space—spin function. These functions are eigenfunctions of the operators 72 and
J,» corresponding to the total and z components of the angular momentum (j = I+§), with
respective eigenvalues j(j+ 1) and m so that m is the m; quantum number.

X« m(e/w ¢,u) = B <%(m—ms> mg Lym> Yl, m—ms(ﬁ/p ¢/L) I%ms> (2.4)

1
ms=—3

1 Mm.—

Here, Y, ,,_;, (0,,¢,) is a spherical harmonic centred on nucleus # and normalized such that
Y, o = 1/(2n%), while |§m,> is a two-component spin function

W= ()=l 1-»=(7)=1» (2.5

The quantum number « defines both the total angular momentum j and the orbital angular
momentum [ through

+1 for j=1[+4+}

1

—1 for j=1[-}. (2.6)

k=—(+ia a={

The (2j+ 1) orbitals, differing only in the m quantum number, are said to constitute a sub-shell
(Grant et al. 1976) denoted by B, and are taken to have the same radial functions. The label
b in (2.3) defines the orbital uniquely after specification of the centre p, thus defining the «
and m; quantum numbers which may both carry the additional subscript 4. In the relativistic
molecular orbital description of the valence function |®, (7, pnso41--- F)?, the molecular
orbitals are expressed as sums of central field orbitals (2.3) centred on both nuclei.

The orbitals given in (2.3) are constructed to maintain the appropriate relation between the
large and small components (Grant 1982; Dyall ef al. 1984) and thus lie within the sub-space
of the electron-like solutions of some single-particle Dirac-Fock hamiltonian. The energy of the
wavefunction (2.1) can therefore be evaluated as the expectation value of the relativistic
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RELATIVISTIC INTERACTION ENERGIES 75

hamiltonian #, (equation (2.7)), without the need to introduce any projection operators into
an electron-like sub-space (Brown & Revenhall 1951; Mittleman 1972).

. N . N-1
Ky =3 Hp()+ X Z T (2.7)
=1 i=1 j=i+1
Hp (8) = H(0) + Ve (1) (2.8)
Hw(i) = ca(i) p(i) +[B1) —1]. (2.9)

In the operator #y (i), which acts solely on the coordinates of electron i, the zero of energy
is defined to correspond to that of a stationary free electron, and p(i) and ¥, . (r;) respectively
are operators for momentum and the potential energy of interaction with nuclei that are
regarded as stationary point charges possessing no magnetic moments; ¢ is the velocity of light.

The quantities @ and £ entering the kinetic energy (2.9) are 4 x 4 Dirac matrices

a=(001, "(')P) and ﬂ=<é _OI), (2.10)

where 6F are the 2 x 2 Pauli matrices and I is a 2 x 2 identity matrix (Dirac 1958).

(b) Atomic orbital symmetry

The three operators ﬁq, ;> defined by
H,,=iZ,pH, ,, ¢=1y,z, (2.11)
Poo
with z, = (‘:)q ch)’ (2.12)

are relativistic generalizations of those Hx I H s and I-?z’ s corresponding to spatial reflections
in the yz, xz and xy planes (Pyper 1982). The tlme reversal operator Ty is given by (Rose 19671)

Tq =i2,K, (2.13)

where K is the complex conjugation operator. In a coordinate system having an origin midway
between the two nuclei, with the z aligned along the internuclear axis, the one-electron
hamiltonian 4, for each electron commutes with Hx & H ; (Pyper 1982) and Ty (Rose 1961)
and, in a homonuclear system, with H, ¢ also (Pyper 1982):

[#p (1), Hy, ()] = [#p (i), T ()] = [{Tr() Tr()} ']
= [{H,,,() H, ()}, '] = 0. (2.14)

The orbitals (2.3) are transformed under (2.11) and (2.13) according to the following (Pyper
1982):

H, Jlu, ycymy = i(— 180" |y, x, —m); (2.15)
ﬁy’ t[u”’ b Kp my = (— 1)m+§ (— 1)%(1—&12) |”/4, b Kb"‘m>; (2.16)
H, JJu, ,Kymy = i(—1)f=m+i0-a) lu, prpmd (W # p); (2.17)

TRlup,be my=H, el p Kpym). (2.18)
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76 C.P. WOOD AND N.C. PYPER

The result (2.17) applies only to a homonuclear system which is taken to have the same set
orbitals, specified by the label 4, on both centres. The result (2.18) is derived by the method
used to obtain (2.16) (Pyper 1982).

Combining the result (2.16) with A (i) H

y, (1) = 1 establishes the following (Pyper 1982):

<u/L, bKpT |u,/, cKe m> = (‘ 1)%(%_%) <uﬂ, be_mll‘,/, cKc_m>; (2-19[1)

{u, p Kp ml‘}?KElu,u',cKcm> = (— 1)k <“,L,b’<b‘m|9?KE|uﬂ' Ke—mpy;  (2.190)

,c
g kp Ml Vpgeltt, o kymy = (— 130070 (u, iy —ml Vyylu o Ko —m) s (2.19¢)

<u/4, b Kp My u,u’, cKe mclrl—zllu,u”, akagMg u,u’", eKe me> = ( - 1)%(ab+ac—ad—ae)
Sy, p Ky =Myt o Ke=melriglu, gKg—mgtn (Ko—mep, (2.194d)

where (¢, P |rild, @,> is the relativistic electron—electron repulsion integral [ [ ¢, (r,)* @, (r,)*
172 Pa(ry) @e(r,) drydr,, with ¢ (r,) a four-component Dirac orbital. The integrals (2.194)
vanish unless m, +m, = my+m,. For a homonuclear system, use of the identity Hj,tl-?z,t =1
shows that

Gty gyl gmy = (— 1)l (— (4@~ Cu iy mlu, komd, (4 # ). (2.20)

3. CLOSED-SHELL SYSTEMS
(a) Wavefunction construction

The wavefunction describing the interaction of two closed-shell systems is a simplified form
of (2.1):
[P () ry)> =Sl (|, (Fy o 1y )V | Py(Fyyir - FN)D), (3.1)

where N = n1 +n2. It is now required to determine the expectation value of #;(2.7) with this
wavefunction. This is complicated because the orbitals used to construct the wavefunction
(2.2a) for atom 1 are not orthogonal to those entering the wavefunction (2.24) of atom 2.
However, the wavefunction (3.1) is invariant to a linear transformation of the atomic orbitals,
so that the calculation of { ¥|#|¥) may be simplified by extracting an orthonormal set from
the atomic orbitals of the two atoms. This is achieved by using Schmidt orthogonalization.

First an ‘inner’ core of orbitals is defined. These are a set of core orbitals taken from both
atoms such that any pair of orbitals on different atoms have negligible overlap. In a
homonuclear system the ‘inner’ core contains identical orbitals from each atom. The orbitals
remaining after removal of the inner core are termed the ‘outer’ core. The outer-core orbitals
are ordered in terms of increasing mean radius and a new orbital list is then defined, consisting
of the inner-core orbitals of atom 1, followed by those of atom 2, followed by the ordered list
of outer-core orbitals. Each set of atomic orbitals having a particular m value is treated as a
separate group because orbitals of different m are already orthogonal. The ordered orbital
list is:

[ul Ky m> ter |uncm Knem m>7 luncm+l Knem+1 m>5 IuNm KNm m>a (3‘2)

where nem is the total number of inner core orbitals with m; = m, and Nm is the total number
of inner- plus outer-core orbitals with m; = m. It should be noted that the label ¢ on atomic
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RELATIVISTIC INTERACTION ENERGIES 77

orbital |u;k;m) in (3.2) is a label in this new combined list; there is no label denoting the
nuclear centre although for the inner-core orbitals one has

|u; k;my = Iul, ikemy; 1< nelm, (3.3q)
lu; k;m) = |ty i nerm Kimnerm M- nelm <1< nem. (3.3b)

Here, ncum is the total number of inner-core orbitals on atom p having m; = m so that
nclm~+ne2m = ncm. On the right side of (3.3), the first subscript containing ¢ is a number
defining the position in a list of orbitals on atom u having m; = m, and therefore differs from
the more general label 4 in (2.3) which defines both the sub-shell and the m; quantum number.
Starting with the first outer-core orbital, each orbital is in turn orthogonalized to all of the
orbitals appearing before it in the ordered list and then replaced in the list. The first ‘molecular
outer-core orbital’ thus obtained is

|pim) = Si(lui Kymp _E}T Sug iy m |us kg m) |u; ’">>’ (3.4)

where ¢ = nem+1 and S, is a normalization constant. Subsequent molecular outer-core orbitals
are given by

(Bom> = Silugkemd = % Cuygmbirom by = S ymlukmy gymd). (39

Only the orbitals with positive m need to be explicitly constructed because it is shown in §34
that those having negative m can be related to those with positive m by using the operator 117% .

A slightly different procedure is used for symmetric molecules. Here the atomic orbitals with
a common value of m are ordered according to (3.2) and (3.3), but each pair of equivalent
outer-core orbitals from centres 1 and 2 are kept together. The first stage in generating the
first pair of orthonormal outer-core orbitals is to replace |u; ;k;m) and |u, ;k;m), where
i = gnem+ 1, by the two molecular outer-core orbitals |, ;m) and |¢, ;m)> defined by

inem

|6, m> = S;(lu, ;k;m>— El Swy jhymlu, gogmylu, jkymd), (' # p), (3.6)

even though these two orbitals are not orthogonal to each other. The first stage in the
construction of subsequent pairs of orthonormal outer-core orbitals is slightly more complex,
because they must be orthogonalized to each orbital already present in previously generated
pairs of molecular outer-core orbitals, as well as to the inner-core orbitals. Thus the atomic
orbital |u, ; k;m) is replaced by

incem

2
|¢%im> = Si[luﬂ,ik‘i my— E]l (uﬂ,,j/cjmluﬂ)i/cim> Iuﬂ,’j/cjm>

i—1

- X (e, ymlu, ik;m) P, ;m)

j=@Gncm)+1

Byl ikim) By )], (3.7

After the procedure (3.7) has been executed for each pair of outer-core orbitals |u; ;k;m) and
|uy, ;k;m», the two orbitals |#, ;m» and |¢, ;m) constituting pair ¢ are orthogonal both to the
inner-core orbitals and to all molecular outer-core orbitals in all other pairs ¢’ # .. However,
for each pair of molecular outer-core orbitals ¢ constructed according to (3.7), the orbitals
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78 C.P.WOOD AND N.C. PYPER

¢, ;m» and |@, ;m) are not orthogonal to each other. This is rectified by defining the pairs
of orthonormal outer-core orbitals

|Bis m> = 27585 (1py, s> L by, ;D). (3.8)

The orbital set composed of the inner core defined according to (3.3) plus the (Nm— Ncm)
orthonormal outer-core orbitals defined in (3.8) is fully orthonormal.

For both homonuclear and heteronuclear molecules, the wavefunction (3.1) is expressed in
terms of the orthonormal set of orbitals as

nem Nm

(e > = | T (T laemd) (TE 1m0 (3.9)
m =1 i=ncm+1

Here the electron coordinates not written explicitly on the right side are defined by the

convention that, in the identity permutation in the antisymmetrizer <7, electron (Nsm+ )

occupies the orbital having m; = m which is defined by the label ;. The quantity Nsm is defined

to be zero when m = m the smallest m; value appearing in (3.9); otherwise it is given by

min»

Zz;lmmm Nsm’. For homonuclear systems, unique specification of each orthonormal outer-core

orbital in (3.9) is achieved through the definitions

|¢ncm+2z’~1 my = |¢(ncm+i)+ my ;l

|¢ncm+2i my = |¢(ncm+i)— my. J

Because it is subsequently convenient to have a single notation for all the orbitals entering (3.9),

(3.10)

the quantity
|p;m) = lu;k,my; 1< nem, (3.11)
can be defined.

The atomic orbitals (2.3), (3.2) and (3.3) generated by the Oxford MCDF program consist
of numerically defined radial functions multiplied by an analytic space-spin function. Hence
each orthonormal orbital entering (3.9) can be expressed as a sum of space—spin functions, with
varying « and centre, each associated with new upper and lower radial functions formed by
summing the separate radial contributions generated by the orthogonalization step

|¢j m> =22 IQj;ucm>’ (3.12)
K ow

where 19;,m> = 2 Uy mlug;m) 8, 6, . (3.13)
i

Here Uym are the elements of the orthogonalization matrix associated with the set of orbitals
with a particular m value, and g, is the centre of the function |u; k; m), i.e.

|¢jm> =§ Uy mluy k;my. (3.14)

Note that Uym is unit diagonal for ¢ < nem.

Here it should be noted that it is computationally much more convenient wherever possible
to add orbitals together and then integrate over the combined function, rather than to perform
separate integrations over the individual orbitals. This dictates the way in which the interaction
energy is calculated.
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(b) Symmetry properties of the orthonormal orbitals

It is shown in this subsection that the molecular outer-core orbitals (3.4)—(3.7) transform
under I;Vq’t and Ty in exactly the same way (see (2.15)—(2.18)) as the atomic orbitals (2.3).
It then follows, by using the identical arguments that matrix elements involving molecular
outer-core orbitals are related in the same ways (equations (2.19) and (2.20)) as those involving
atomic orbitals (2.3). Although molecular outer-core orbitals are not eigenfunctions of jz and
therefore do not carry the labels j, « or a, there is a one-to-one correspondence between these
orbitals and the atomic orbitals in the ordered list (3.2). Thus the molecular outer-core orbital
lp; m> (this is [, ;m) for a homonuclear system) is uniquely associated with the atomic orbital
|u; k; m) (Iuﬂ,iki my), which is absent from all previous molecular outer-core orbitals
lg;m> (I¢, ;m>) (j <i),sothat|g,;m) (|¢, ;m))is the first molecular outer-core orbital to contain
luskym) (|u, ;k;mp). Hence the labels j; and a;, which appear in relations of the type
(2.15)—(2.20) obeyed by molecular outer-core orbitals, are the quantum numbers of the atomic
orbital |u, ;k;m) with the molecular outer-core orbital is uniquely associated.

For homonuclear and heteronuclear systems respectively the first orthonormal outer-core
orbitals |¢; —|m|)> with i = ncm+1 are defined by (3.4) and (3.8) respectively, with a negative
value for the m; quantum number. Application of either ﬁy't or Ty onto the orthonormal
outer-core orbital |, m) having a positive m; quantum number and invoking (2.19a) shows that

TR|¢i my = Hy, ilpimy = (— 1)m+%(" 1)%(1—“1) |pg—m>; = nem+1, (3.15)
whence it follows from Hj, ,H, , =1 that
Cpy—mlu, jo5—my = (— 1Y@ Lhomu, ;k;m). (3.16)

Application of either I;(y,t or Ty onto the second orthonormal outer-core orbital (3.5) or (3.8)
followed by invoking (2.194) and (3.16) shows that

Trlgsm) = H, (|p;m) = (—1)™H(—1)}0-20 |¢, —m}. (3.17)
It then follows from sztﬁq’t = 1 that
(pi—ml|p;—m) = (—1)@~) (g, mlg;my; (3.184a)
(s —m|Hgglpy—m) = (— 1)k~ (B, m| Ay gl m); (3.180)
(B = Vel —m> = (— 120D (B, ml Vpoolhy m (3.180)

(p;m ¢j m|riglpm’gym” >y = (— 1)3@ita;—ag—ay {p;— mep;— m'|rglgp—m” ¢ —m">. (3.19)

It is trivial to prove by induction that the relations (3.16)—(3.19) are valid for all
orthonormal outer-core orbitals, (3.16) being non-zero only for j > ncm. Identical arguments
show (3.16)—(3.19) to be valid for the molecular outer-core orbitals (3.6) and (3.7) in a
homonuclear system. In the standard expansion (5.4) (Brink & Satchler 1968) of r;}, only
terms independent of the azimuthal angles ¢, and ¢, contribute to integrals of the type
{pymp;m' 17|y m ¢, m”>. Hence, for these integrals, one can write

(pymp;m'|rifldgmdym’> = {Ppymp;m’|r7} HI/ ¢(1) ﬁy, t(1) | ppmeym”>
=<{p;me; mIIHL, d1)77s Hy, (1) @ meym’>, (3.20)
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because the operator ﬁy, s(1) for reflection of the coordinates of electron 1 in the xz plane
changes ¢, to —¢,, while (3.20) has no contributions from terms in 773 depending on this angle.
Substitution of (3.17) into (3.20) then establishes
(pim;m'rglppme,m> = (— 1)3@=%) (P, —m G;m'lrig|dy—md,m”>
= (= 149 {pym gy —m'|riflpp mPpy—m>. (3.21)

where the second relation is derived from the form of (3.20) containing ﬁy, +(2). The relations

(3.21) are also satisfied by the two-electron integrals over pure central field orbitals (3.2).
The approach used to derive (3.17) also shows that, in a homonuclear system, the molecular
outer-core orbitals (3.6) and (3.7) are transformed under ﬁz’ . in exactly the same way as the
central field orbitals (3.2). Thus, left multiplication of (3.6) by Hz,c and then invoking (2.20)
shows that the first molecular outer-core orbitals (3.6) also have this property. The use of
H! ,H, , =1 then yields
<u/“;l<im |¢ﬂ,’ pmy = (— 1) i (—1)(@—an) <“/4’, JKm |¢/4 amy, (W #n). (3.22)
Application of ﬁz‘ , to the second molecular outer-core orbitals (3.7) shows after the use of (2.20)
and (3.22) that
H, ||, jm) = i(— 1)Jmmt0=ad|g, m), (W # ). (3.23)
A simple proof by induction then establishes the validity of (3.22) and (3.23) for all molecular
outer-core orbitals, (3.22) being non-zero only for ¢ > Lncm.

The two-electron integrals can be expressed as the energy of repulsion between two charge
densities:

(Bamy sty m™> = f f DGk (1) DU LW (1) 1 dp dr, (3.24)

where the charge densities are defined by

DEm B (r) = [y m(r)]* [ by m” (r)]- (3.25)
Left multiplication of (3.17) by —:X, and the use of (2.13) shows that
[fim(r)]* = (—1)™* (= 10790 (—iZ,) (¢, —m). (3.26)

When taken in conjunction with
[pim(r)]" = {[¢;m(r)]*}7, (3.27)
where T denotes the transpose, this establishes that

D@ m, k, m")(r) — (_ l)m”—m (_ 1)%(%—'1@') D(Ic, -m’, §, —m)(r); (3.28)
whence
(pymeym' gl m” ym™y = (= 1) (— 1)@= LG, —m"d;m/ ||, —mpym”
=(—1)m"m(— 1)@= (p.m ¢, —m"|rifl e, m” ¢j —m’y. (3.29)
A special case of (3.29) shows that

{pimp;m'|riglp; —mym™) = 0. (3.30)

The transformation property (3.17) of the orthogonal orbitals is important because it shows
the wavefunction (3.1), (3.9) to be symmetric under the many-electron generalizations
(equation (2.19) of Pyper (1982)) of the operators ﬁx’ t,ﬁyyt and time reversal, while (3.23)
shows this to be also symmetric under the many-electron generalization of H, ,. Any


http://rsta.royalsocietypublishing.org/

e \

A A

JA

A

A
‘/\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

 \

A
yah N

V4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

RELATIVISTIC INTERACTION ENERGIES 81

trustworthy approximation to the exact wavefunction should have these properties possessed
by the latter (Pyper 1982). The relations between the integrals derived in this section are used
to simplify the calculation of the energy of the wavefunction (3.9), (3.1).

(¢) Calculation of the interaction energy
(1) Complete energy expression

It is inappropriate to calculate { ¥ |#|¥) directly because this quantity is, in general, very
large (typically 20000 a.u.), while the quantity of chemical interest, namely the change in
energy on formation of the molecule, is very small (typically 0.1 a.u.). Most of the contribution
to (¥ |#y|¥) comes from the ‘inner’-core orbitals, and because these are unchanged in the
molecular environment it is clearly sensible to perform the calculation in such a way that most
of the terms involving the ‘inner’ core are removed. This is done by calculating the interaction
energy AEIL . which is simply the difference between the energy of the molecule and the sum
of the energies of the constituent atoms:

AEZ: . = (P Hoonl V) — D) | B, ) — Do Ao @, ), (3.31)
where Hpor = #p+2Z,Z,/R,
. Np . (Np)—1 Np
Hy, = % (Hxp()—Z,/r, )+ iZ g (3.32)
i=1 =1 j=i+1

where Z is the charge on nucleus # and R is the separation of the two nuclei.
The wavefunction (3.9) for the interacting system and those of isolated atoms can be written

/ Nm
|P(ry,...75)) = M(H I1 |¢jm>),

" (3.33)
1D, (Fy oo 7D = M(I”-_l[ jH1 lw,, ;& m)),

where the notation (3.3) is used for the atomic orbitals and Num is the total number of inner-
plus outer-core orbitals on atom g having m; = m. Substitution of (3.33) and (3.32) into (3.31)
shows, from standard techniques, that

Eé’éie % zE1 {¢y m'%KE Z\/n—=2Zy/ro|p;m>+Z, Z,/R
Nm Nm'
+ ZZ Z Z <¢im¢jm/|r;2ll¢im¢] > <¢zm¢] /’7‘1 '¢]m¢zm>)
m m’ i=1 j=1
Nim
-2 21 <”1 szm'%KE Zl/rl|ul,ikim>
m 1
1 N1im Nim'
—-*EE 2 X Ky, gkgmuy i iritluy jkymuy gk m’)

m m’ {=1 j=1

— <y, Kymuy K m/|rigluy, jkymuy Kk mY)
Nam
-2 X <u2 i Kq ml'}?KE 2/’2|”z,i’<im>
m =1
N2m N2m’

—~EZ 2 2 (Kug gkymuy jrymlrgluy jk;muy jk;m')

m m’ i=1 j=1
<u2 KMy jK;m Irlzluz J ]m,uz,i’(im>) (3.34&)

= AEg+AEgo+AEgy. (3.340)
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In the one-electron integrals, r, is the distance of the electron from nucleus p, while r,, in the
two-electron integrals is the dlstance between electrons 1 and 2. The interaction energy (3.34a)
is decomposed (3.344) into a kinetic energy term (AEgyg), a nuclear—coulomb term (AEy)
involving the electron—nuclear attractions plus the direct (‘coulomb’) electron—electron
repulsion integrals ({¢; ®;7771¢; $;>), and an exchange term (AEx) consisting of exchange
integrals (&, @;/r771¢; ¢;>. The k1net1c energies and attractions for their own nuclei of inner-core
electrons, together with intra-atomic inner-core electron—electron repulsions, are the largest
terms in (3.34a). However these contributions, appearing in the sums over orthonormal
orbitals |¢; m) to the energy of the molecule are the same as those to the energies of the isolated
atoms, appearing in the sums over atomic orbitals (3.3).

(i) The kinetic energy term

The kinetic energy term from (3.34) is, after noting that the inner-core contributions in the
molecule exactly cancel those in the free atoms,

Nim
AEgp =2 2 (pimHgglp;my—% X Cuy, o kym| A gluy, k,m)
m t=ncm+1 m i=ncim+1

N2m
-2 ) 2 <u2,iKi mp?KEWz,z’"i my. (3.35)
m t=nc2m+1
The summation over the orthonormal orbitals (|¢;m)) of the molecule may be restricted to
positive m values by using (3.185). The summations over the m; quantum numbers in the
kinetic energies of the outer-core orbitals in the isolated atoms (the last two lines) can be
evaluated analytically (Grant 1970) to yield

AEgp=2 % Z {; m|fnyE|¢z my— % (2 +1) Igp(d)— X (Zp+1) Igg(B).

m>0 i=ncm+1l Ae0c1 Beo0c2
(3.36)

The summations over 4 and B are over all the subshells in the outer cores of atoms 1 and 2
respectively, while I (4) is an atomic relativistic kinetic energy integral, the computation of
which is simple and standard (Grant 1970).

The integrals yielding the kinetic energies of the orthonormal outer-core orbitals in the
molecule are not computed directly, but generated by transforming the kinetic energy integrals
over the original atomic orbitals

(pym| g plp;m> = 22 sim Uygm g i m| oy gty kym. (3.37)

The computation of these two-centre kinetic energy integrals over atomic orbitals is described
in §5.

(i) The nuclear attraction and coulomb terms

The nuclear attraction and ‘direct’ electron—electron repulsions are grouped together into
the term AE . because they involve similar quantities which to a large extent, tend to cancel.
After noting that the purely inner-core contributions to AEy in the molecule cancel those of
the isolated atoms, (3.34) shows that

AEge = AExom+AEqry+AEyca+ 2, Z,/R; (3.38)
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Nm nem’
AEyey =2 X (<¢im|—z1/’1_zz/7z|¢im>+§ j§=:1 <¢im¢jm,|7le|¢im¢jm/>)§ (3.39)

m t=ncm+1

1 Nm Nm’
AEqin=32 2 2 X (Lpmom|ri}ip,mp;m>; (3.40)
2 m t=ncm+1 m’ j=ncm’+1
ncim neam
AEgyea =2 2 Suy jkym|—Zy/roluy joomy+2 2 Cuy jkym|—2Zy[ri|uy ;6,m)
m  i=1 m t=1
Nim N2m
- X <u1,iK'£ m|“Zl/’1|“1,i’<z’ my—2% X <“2, i K m|_zz/72|u2,i’<¢ my
m t=nclm+1 m i=nc2m+1
neim nc2m’

+2X 2 X X Cuy grgmuy jrpmlrifluy gkymuy jeim’y
mm =1 j=1

1 Nim Nim’
2| ’
—52 by . 21] . ( ? » <u1’ikimulyjij |rl21|u1’ikimu1’jkjm)
m m’ i=nclm ) =nC m’

necim’
+2 > Quy gkgmuy jrym|rifluy kmuy ;K; m’))
j=1

1 N2m N2m’
- ’
-3 > 3 3 ( > <u2,i’<imu2,j’<jm |rl21|u2’ikimu2’jkjm >
J

m m’ i=nc2m+l \j=nc2m’'+1
neam’
+2 X Quy jkymuy jkim|riflu, jk;muy ;K; m’)). (3.41)
j=1

The first contribution (AEycy) to AEy. comprises the attraction to the nuclei of the
orthonormal outer-core orbitals in the molecule plus the coulombic (direct) repulsion between
this outer core and the inner core. Because (3.18¢) shows that the summation over the
orthonormal outer-core orbitals can be restricted to positive values of m, AEqy becomes

Ayow =2 B (iml(=Z/n=Z/r+ T 2 Cymlldipy ) lgomy,  (342)

where the third operator term is the electrostatic potential generated by the inner-core orbitals.
It is a standard result (Grant 1970) that the potential (V,cre(r,)) generated by the nucleus
plus the core of atom g is a spherically symmetric function centred on the nucleus of g and

is given by
neim’
V,ucore(r,u) = _Z,u/r,u+7§, z§1 <¢;’ m/|71_21|¢j m’)
2]
==z /nt 3 @) [P0+ Q0015 0 (3.43)

where the sum over 4 is over all the inner-core subshells of atom u, and 7, is the greater of
r, and 7. As with the kinetic energy terms, the integrals entering (3.42) are evaluated by first
computing the matrix, having elements V,, over atomic outer-core orbitals:

Ve = Sugicgml| I};core(rl) + I72(30!'e(72) luy iy m, (3.44)
and then transforming to the orthonormal outer-core orbital representation. The computation
of both the potentials (3.43) and those portions of the integrals (3.44) located entirely on one
nucleus is standard (Grant 1970), while the calculation of the two centred terms in (3.44) is
described in §5.
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84 C.P.WOOD AND N.C. PYPER

The result (3.21) shows that the second term (AEq ) in (3.38), which is the coulomb
repulsion between the outer-core electrons in the molecule, can be written:

Mow=2 % F (B F comidipm)m). (645

m>0 t=ncm+1 m’' >0 j=ncm’'+1
This is evaluated by first computing the potential generated by the density

Nm'
%X gy ()] [gm(r)],
m’'>0 j=ncm’+1
which is independent of ¢ and m, and then calculating the energy of interaction of this density
with the potential just calculated. The quantity AEqy; contains a self-energy term (AEgp1x),
given by
Nm
Abgpre= 2 2 K$ymo;mlrijlg;mep;mp, (3.46)
m>0 t=ncm+l
which is cancelled by a similar term in the exchange energy, AEx. Each individual term in
the self-energy is computed by using similar techniques at the same time as AEqy, rather than
as part of the exchange energy. The computational techniques used for both AEqy and
AEg .y are described in §5.

The third term (AEygs,) in (3.38) involves only central field atomic orbitals (2.3).
Furthermore all the terms, excepting the first, second and fifth, are purely one-centred and
can therefore be evaluated by using standard techniques (Grant 1970). The fifth term, being
the purely coulombic repulsion between the cores of atoms 1 and 2 which have negligible
overlap, is given by (Ne,) (Nc,)/R, where N¢, is the number of inner-core orbitals on atom p.
Thus AE -, becomes

ncim neam
AEyca =2 X <“1,i’<im|—zz/72| Uy, Ky my + 2 Z <uz,i’<im|_zl/71|uz,i’<im>
m i=1 m i=1
+ (Ney) (Ney)/R— 2 (24 + 1) [,(4)— X (2/p+1)1,(B)
Aelcl Be0c2
1 . .
-5 2 (1) (2u+1) (208, 4) Fo(4,4)
2 4 avcoct o

1 : .
32 X (Zp+1)(Zp+1)(2—0p p) (B, B) (3.47)
2 Be2 B’e0c2 oo

where F%A,A4’) is an atomic relativistic radial direct electron—electron repulsion integral
(Grant 1970, equation 8.3) and [,(4) is the atomic nuclear attraction integral

L) == [T 20+ e (3.48)

In (3.47) the sums over 4 and B are over all the subshells belonging to atoms 1 and 2
respectively and d, 4 is one if both subshells 4 and A’ belong to the outer core and is zero
otherwise. The first two terms in (3.47) can be evaluated by using the methods described in
§5, although it is consistent with the above calculation of the repulsion between the two inner
cores to express these as —Z,(N¢;)/R and — Z,(N¢,) /R respectively.


http://rsta.royalsocietypublishing.org/

e \

A A

JA

A

A
‘/\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

 \

A
yah N

V4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

RELATIVISTIC INTERACTION ENERGIES 85

(iv) The exchange energy

The exchange contribution (AELx) to the interaction energy (3.34) becomes, after noting
that the purely inner core contributions in the molecule cancel those of the isolated atoms,

AEEX = AEEXM+AEEXA (3.49)
1 Nm Nm'
A ’
AEgxy = ) Y Z; ) ,EE’HU_ nc%yﬂ <¢zm¢jm |7121|¢jm P;mp
m m’ i= =
Nm nem’
_gn: % i—n§m+1 fz—:l (Gim@ymIngl gsm’ $om). (8.50)
1 Nim N1im
N Y —
AEgxa = 52, > > (ul’ikimul,j/cj m|rigluy jk;m uy gk m
m m’ t=nclm+1 j=nclm’'+1
neim Nim’
2| a— ’
+§n] %‘, p) j=nc§1:m+l <ul’iKimu1'jij |7121|ulyj/<jm Uy 1K my
1 Na2m Na2m’
| p— ’
+5 DIDINEEDY 5 uy gkymuy jkym|ritluy o m uy kym)

m m’ i=nc2m+1 j=nc2m’'+1

neam N2m’

+33 X > g, gkymuy jhm |13y K;m uy s K;m). (3.51)
m m’

i=1 j=nc2m’+1

The exchange terms between the inner-core orbitals on one centre and those on the other centre
are neglected because the differential overlaps between such orbitals are vanishingly small.

The result (3.19) shows that the summations over m, but not m’, in the molecular
contribution (3.50) can be restricted to positive m, the coefficient of each term being doubled.
The terms in (3.50) having simultaneously 7 = j and m = m’ constitute the self-energy (3.46),
which has already been calculated. The methods used to compute the remaining terms of (3.50)
are described in §5.

The remaining contribution to AE,y consists of that portion (AEyx,) of the exchange
energy of the isolated atoms which changes in the molecule because it involves the outer-core
orbitals of the free atoms. Evaluation of these purely atomic terms yields (Grant 1970):

AEgxa = 2 2 (jA+%)Fg(A,A)

p=12 e0cu
_1_ y Y -0 II jAjA'L 2 L ’
52 X (Zat1) (2 +1)(2 4,4) 2 kg, k0, L) 1474 Gy (4,47) ),
2 Aep A’e0cp L>0 27 2 Y

(3.52)

where [l(k,4,«,,L) is a parity selection factor which vanishes unless [, +/z+ L is even;

GL(A,4’) is an atomic relativistic radial exchange electron—electron repulsion integral
. T

(equation (8.4) of Grant 1970), and (ij“; 0

27 2

first term in (3.52) cancels the self-energy included in the direct repulsion between the

outer-core electrons of the free atoms present in AE ., (3.47).

) is a 37 symbol (Brink & Satchler 1968). The
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4. VALENCE WAVEFUNCTIONS

The valence portion of the wavefunction (2.1) describes both those electrons occupying open
shells in the isolated atoms plus those occupying the core orbitals that are significantly affected
by the formation of the molecule. The valence function can be taken to be a single
antisymmetrized Hartree product of molecular orbitals when (2.1) becomes a relativistic
molecular orbital wavefunction calculated within the frozen core approximation. The com-
putation (Wood 1984) of such wavefunctions for the chlorides of both astatine and the
superheavy element with nuclear charge 117 will be described elsewhere. The valence
wavefunction can be generalized either by introducing configurations built from excited
molecular orbitals, which describe valence electron correlation, or by taking this to be one of
the relativistic generalizations of the valence bond method. The RIP program has been used
(Wood & Pyper 19814) to compare molecular orbital, configuration interaction, relativistic
valence bond and kappa valence (Pyper 19804) descriptions of the dimer of element 113. The
valence wavefunction of whatever form is built from a set of purely numerically defined central
field orbitals (2.3), which includes at least the valence Dirac-Fock atomic orbitals occupied
in the isolated atoms.

The calculation of the expectation value of #y, for the wavefunction (2.1) containing valence
electrons is a straightforward extension of the method used for the closed-shell system. The core
orbitals are first orthogonalized as described in §34. The wavefunction (2.1) remains
unchanged if any linear combinations of the core orbitals are added to the orbitals |u,, (7))
which are used to construct the valence wavefunction. Consequently, each orbital used to form
the valence wavefunction can be replaced by a linear combination of that valence orbital with
the core orbitals, constructed such that the new valence orbital |@,;(r)) is orthogonal to all
the core orbitals. With these transformations of the orbitals the wavefunction (2.1) becomes

. . Nfm
W0y r)> = Lo B [T T 80| 4 Fupimpainess i) (81

where Nfin is the total number of inner- plus outer-core orbitals having m; = m, o, is the
antisymmetrizer for the core wavefunction and &, is the partial antisymmetrizer which
interchanges coordinates between the core and valence functions. Here the new antisymmetric
valence function |@}) is constructed from the valence orbitals |¢;> which are orthogonal to
the core but not to each other. The methods presented in §3 5 show that each valence orbital
|y transforms under the operators H, , and Ty in exactly the same way as the valence
atomic orbital from which it is derived. Each orbital |¢;>, though containing many core
orbitals, contains only one valence atomic orbital (2.3) so that the labels j; and a; which appear
in the relations of §34 are the j and a quantum numbers of this valence atomic orbital (2.3).
These symmetry properties of the valence atomic orbitals can be used to ensure that the
wavefunction (4.1) has the correct symmetry. Thus, for example, in a homonuclear diatomic
molecule, molecular orbitals constructed as linear combinations of the |¢,;> will be eigen-
functions of ﬂz,t of eigenvalue +1i or —i, just like the exact eigenfunctions of the molecular
relativistic Fock operator (Pyper 1982).

The orthogonality between the valence |¢;> and core orbitals ensures that the valence
function |@,) is strongly orthogonal (McWeeny 1959) to the core. Hence it follows that the
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difference between the energy of the molecule and the sum of those of the isolated atoms, the
interaction energy, is given by

AERt = E,—E, — E,,+E,—E,,—E,,. (4.2)

val

Here E,, and E,, are the energies of the core and valence electrons respectively in the free atom
4, and E, is that of the core of (4.1) in the molecule. The quantity (E,—E,,—E,;) is the
interaction energy of the atomic cores in (4.1) given by (3.34). The energy (£,) of the valence
electrons consists of an effective one-electron energy plus the electrostatic repulsion energy
between the valence electrons, which can be expressed as a sum of integrals of the type
Py Dyjlrialdys yer- The effect of the core on the valence orbitals, which is included in the
valence effective one-electron energy, is taken into account by simply adding to the nuclear
potential operator ¥, .(r) the direct and exchange potentials generated by the core orbitals.
Thus the valence effective one-electron energy consists of a sum of integrals of the type

<¢Vi|F;.|¢vj>’ defined by

Nfm

<¢vz|Fi|¢vj> = ¢yl #xn+ Vnuc(’)l¢vj>+§ s§1
X ({Pvi s Mg py; psmd —y; Psmlriglds mpy;0);  (4.3)
<¢vzlﬁil¢w> = <¢vzl9?KE + I7100!13(71) + I72001‘(3(7«2) |¢vj>
Nfm
Hal(2 S ot m )ibud

m>0 s=ncm

nfm
=2 X Py Psmlriglpsm by (4.4)

m s=1
The integrals over the kinetic energy and direct electrostatic potential generated by the nuclei
plus inner-core orbitals (the first term in equation (4.4)) are evaluated by transforming the
integrals over the original atomic orbitals (2.3). The integrals over the direct potential
generated by the outer core (second portion of equation (4.4)) are evaluated by first
constructing this potential, which is independent of |¢,;> and |¢,;> and then calculating the
integrals directly in the same way as the outer core electron—electron repulsion (3.45). Each
exchange integral entering the last part of (4.4) has to be computed individually using the

techniques described in §5.

The method, used in the RIP program, of constructing the molecular wavefunction (4.1)
from a set of numerically defined orbitals, which includes the Dirac-Fock atomic orbitals of
the constituent atoms, has three advantages. First it avoids the large basis sets that would be
needed if the orbitals were expanded in the conventional Slater or gaussian type functions.
Thus it has been shown in the non-relativistic case that a basis of Hartree-Fock atomic orbitals
augmented by just one additional Slater or Gaussian function of each symmetry on each atom
recovers over 909, of the difference between the Hartree-Fock limit energy and that of the
molecular orbital wavefunction constructed from a basis of just the occupied Hartree-~Fock
atomic orbitals (Raffenetti 1973). Although the Hartree-Fock atomic orbitals in this non-
relativistic study were expanded in a gaussian basis, no such expansion is used in the RIP
program, which evaluates the molecular integrals directly by using purely numerical methods.
The second advantage of using a purely numerical basis is that it is straightforward to ensure

I Vol. 320. A
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that the small components of the basis functions bear the correct relation to the large
components, so that all the orbitals describe the behaviour of electrons and not positrons in
the presence of the molecular Dirac-Fock potential (Dyall et al. 19844,5). The small
components ¢5; of each basis function are related to the large components ¢ through a

relation of the form ¢S = 2+ (e— V) /e?] 6P p Bl (4.5)

where ¢L and ¢5; are component functions, ¢ is the energy and V is the potential defining the
basis function. This result shows that the matrix elements of the kinetic energy operator take

the form Gl = Gl @GP+ Z 0 b (46)

This result is not computationally tractible because the relativistic corrections [2,,. , 0(c™)]
contain singular terms although their sum is finite (Pyper 198oa; Ketley & Moss 1983).
However, equation (4.6) does show that RIP calculations with basis sets satisfying (4.5) will
correctly reduce to the corresponding non-relativistic calculations in the limit of large ¢. This
circumvents the difficulties arising from the underestimation of the kinetic energy, even in the
large ¢ limit, in relativistic calculations which use conventional basis sets (Mark & Schwartz
1982; Kutzelnigg 1984). The third advantage of the RIP program is that basis superposition
errors (Ostlund & Merrifield 1976) are completely absent for the usual choice of basis,
containing the occupied Dirac-Fock atomic orbitals of the isolated atoms.

5. COMPUTATIONAL METHODS
(a) One-centre integrals

The radial parts (P4(r,) and @Q4(r,)) of the central field orbitals (2.3) are computed
numerically by the Oxford Dirac-Fock program (Grant et al. 1980), which tabulates these
functions at a finite number of points equally spaced on a logarithmic grid of step-size . Thus
these functions are tabulated for integral values of the parameter ¢, defined by

r=rye, (5.1)

where 7, is the first value of r at which P,(r) and @ 4(r) are computed. These quantities are
less than 107° at the largest value of ¢ considered, where, moreover, they are decreasing
exponentially, thus ensuring that larger values of ¢ make a negligible contribution to molecular
integrals. The contributions to one-centre integrals from spatial regions between r = 0 and 7,
are evaluated by taking the integrand to vary as Ar?, with the constants 4 and ¢ determined
by the first two defined values of the integrand. Integrals of the type

j Py dr = h f Y Rt (5.2)

0 -0

arise in the final stage of the computation of all one-centre integrals. These quantities are
evaluated to high accuracy as in the Oxford Dirac-Fock program (Grant et al. 1980), by using
Simpson’s rule in ¢ space.

The first stage in the evaluation of both one-centre and two-centre kinetic energy integrals
requires the computation of the quantities

Frgal, axamed = (c/r,) (154 Qa7 Qa0 /A7) Xy, (2,) ) (5.3)
ik, PA(rﬂ)/r/t_‘_dPA(rp)/drﬂ— 2€QA(",)] X—ky, mu(Qﬂ)
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where 2 denotes the arguments 6, and ¢, of the y, ,, function. The necessary first derivatives
are calculated by using the six-point scheme of Hartree (1952).

Both one-centre and two-centre electron—electron repulsion integrals are evaluated by using
first the expansion (Eyring ef al. 1944)

00 L
=X X (712/’1;“) CI*:, M(QI)CL, m(825), (5.4)
L=0 M=—L
where C; ,,(£2) is a modified spherical harmonic (Brink & Satchler 1968), while r_ and r_
are the lesser and greater respectively of ; and 7,. The calculation of one-centre integrals

<ua Ko Mg Up Ky mb‘rleluc KeMeUg Kg md>

over the central field orbitals (2.3) is reduced to purely radial integrations by using the angular
momentum techniques from the Oxford Dirac-Fock program (Grant et al. 1980). The
electrostatic potential generated by the charge density [u, k, my(F,)]T [uy k3 mg(#,)] is given
through (5.4) by

Sy Ky mylryy | ug kgmg) = ZL: Vo(r) Y, myem, (£21), (5.5)

with the radial function V (r,) given by
Vi) = (am/2L+ 01| [ ok o) 2 Dl ) )
0

10y @11 CE g (20) (e @102 (5.0
The spin and angular integrals

f ey, (@)1 CE. 31(2) [Key ma(@2)] 42,

- f Xery, my (@1* CF. 31(@0) [X ey (@142, (5.7)

are evaluated analytically by using standard angular momentum techniques, the equality (5.7)
permitting the complete separation of radial and angular variables in (5.6). The quantity
D%, (r,) in (5.6) is the radial portion of the charge density distribution of electron 2, and is
defined by

Diga(rs) = 1% [Pp(ry) Pp(ry) + Qp(ry) @p(r)]. (5.8)

The radial integration in (5.6) defines a Y;(r) function whose numerical evaluation by
solving a pair of differential equations is described by Hartree (1955) and Grant (1970). The
final step in the calculation of both one-centre and (via equation (5.40)) some contributions
to the two-centre integrals, is to evaluate quantities of the type

f V(1) D24 () Vo (@) Yoy 1p(@,) iy

= 8L, L 3md—mb, -M fo i Vi,(ry) Diga(ry) dry. (5.9)
Here Y, 3,.(€2,) is a spherical harmonic generated from the charge density [u,(r,)] [4,(r,)]

after performing the spinor multiplications and using (5.26) to handle products of spherical
harmonics.
I1-2
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(b) Two-centre, one-electron and direct inner-core potential integrals

Overlap integrals between two central field orbitals (2.3) located on different centres can
be expressed as a sum of four integrals of the type defined by (5.41) below. Two-centre kinetic
energy integrals also take this form with F(r,) already known from (5.3). Integrals between
two atomic orbitals on different centres over the electrostatic potential (3.43), generated by
the nuclei plus inner-core electrons, take the form (5.41) with F(r,) given by the product of
V,core(Ts) With the radial part of the orbital located on centre 2. The methods used to compute
these integrals are described in §54d.

The two-centre nuclear attraction plus inner-core repulsion integrals with the potential

(3.43) on a different centre from the common one of the two orbitals involve integrals of the
type

f VR () Y (@)1 By(r) ¥, (1) dry. (5.10)

These are evaluated by the procedure used for (5.9), except that the associated Legendre
polynomial @, , (0,) is replaced by @, ,, (0,) throughout §54.

(¢) Electron repulsion integrals between orthonormal orbitals
(1) Introduction

Two-centre, two-electron integrals take the general form:

I= <¢a mal<¢b mblr—l—zllgbc mc> |¢d md>9 (5'11>

where a = d,b = ¢ for a ‘coulomb’ integral and a = ¢,b = d for an ‘exchange’ integral.
The two-centre potential {@, m,|ri}|¢,m,> is evaluated by first expressing the orthonormal
orbitals in terms of their one-centre compound functions

I¢a ma> =22 I‘Qaﬂxma>’ (5.12)
K op
so that the potential becomes
(Bymplridlgemey = £ 5 5T Ly 78120 m - (5.13)
KK pop
The one-centre terms (4 = u’) could be calculated by using the one-centre methods shown in

the previous section, but it is more convenient to calculate them at the same time as the
two-centre terms. However, the two-centre methods (4 # u’) are more complicated.

(i1) Second-centre expansion

In non-relativistic calculations which use Slater or Gaussian basis functions, multi-centre
integrals such as (5.11) are evaluated either by using the special properties of the basis functions
or by moving functions from one centre to another (expressing them as the sum of a series
of functions on the new centre: see, for example, Barnett & Coulson 1951). The numerical
wavefunctions used in this work clearly have no special properties, so a method which involves
moving functions has to be used.

The basic problem is to express the spinor [©2,,,,, > in terms of functions on centre 2. The
method developed here requires that each of the spinor’s four components be expanded
separately on the second centre. This means that the final expression is not an expansion in
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terms of atomic spinors on the second centre satisfying the usual equivalence conditions, but
simply a group of four separate expansions. Consequently, the calculations of the two-centre
terms in (5.13) is considerably less elegant than the calculation of the one-centre terms.
Each component of the spinor is a function of the form r;* P(r;) ¥, (r,) and it is required
to express this in terms of similar functions on centre 2. The coordinate system is shown in
figure 1. The radial and angular functions can be ‘moved’ separately, because the spherical

electron

P> b

Ficure 1. The coordinate system.

harmonics can be expressed in terms of harmonics on the second centre analytically, by means
of the solid harmonic addition theorem. The regular solid harmonics R}"(r) are defined by
Caola (1978):

rp(o) = A= [SEE (N s, )
= 1P (cos 0) e™?. (5.14)

Given that r, = r,—r,, the solid harmonic addition theorem states that (Caola 1978)

g fl+m , e
RP() = S 3 (=0 (57 ) Ri ) R (), (5.15)
U om U'+m
In the coordinate system shown in figure 1,
ry=r+R,,
= r2—R21’ (5.16)

and it is clear that the spherical coordinate @ for R,, is equal to © (by using coordinates relative
to centre 2), so that

RI*(R,,) = RL, P*(cos ) e'™¢
= R, (—1)! 0. (5.17)

Combining (5.15), (5.16) and (5.17) yields

l+m
U'+m

RP(r) =2 (- 1>H’( R (1) R (=10 B
P

[+m .
=3 (40 R R 5.18)
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so that

<[ e 5 (220 e (e )
(5.19)

which completes the expansion.

This spherical harmonic expansion leaves a term 77! P(r,) to be expressed in terms of
functions on centre 2. This term is expanded as a series of spherical harmonics; each multiplied
by a radial function P/, (r,):

1 X,
;zTiP(ﬁ) = §0 Pl (rs) Ys,m(rz)- (5.20)

1

The functions P, (r,) are evaluated by using the orthogonality properties of the spherical
harmonics:

jPz(ﬂ) YE () dQ = HZ Pin(13) Y, (rz)] Y (r,)dQ

M8

P (7s) Oe O (5.21)

Il
o

8

It is clear that because P(r,) has cylindrical symmetry about the z axis, and hence is
independent of the coordinate ¢,, that the left side in (5.21) is zero for m” # 0. The m label
on Py, (7,) is therefore superfluous, and will be omitted from now on. This leaves

, P(r
Pitr) = [ 12 oy a2 (5.22)
Noting that

Y3 o(re) = (1/4/(2m)) O o(6,), (5.23)

where d@2 = sin 6, dd,d¢, and O ,(6,) is an associated Legendre polynomial, gives:
Plry =) [ 2 e, (6, sin6,do 5.24
s (F3) = v/ (27) RS s,o( ») sin 6, d0,. (5.24)

o1

Combining the separate angular and radial expressions (5.19) and (5.20) yields:

e Tomird = [ e 2 (G200

1 U'=|m|

1 l+m\ , ., &
< () AR Femm) | £ P T (). (529

The product of spherical harmonics can be expressed as a sum of harmonics by using the
formula (Brink & Satchler 1968)

(25+ 1)} (20 + 1)} [ b m(s Uk )(s l’k)J
Y:S',()Yl',m 2n2 Ek: YIc,m(2k+1) ( 1) Om —m OOO b (5'26)

where |[s—'|< k< s+l and k= mand k+{ +5 is even.
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Including this in (5.25) and re-ordering the summation yields the final result

1 0 l U+k , ,
Lp) Vo) = B { S8 g )R
1 k=im| W=im| s=|'—k|
T+ DE(= D)™ (((—m)! (4 m) )
X Py(ry) [ o ((z' Fm)l (U —m) !)

y (2l+(ll)j(l?)s!+ 1) (f)fn _km) (8 g /(;)}} (5.27)

where the binomial coefficient appearing in (5.25) has been expressed explicitly in terms of
factorials. The summations over s and £ have been interchanged to show how the expansion
is performed in practice: the functions Pi(r,) are first evaluated by using (5.24) and are then
combined to yield new functions Py, (7,):

" L Utk / k4 1)} (—1)m
Pip()= 3 X 4R;uﬂﬁﬂ< M=)
v=im| s=|i'~k| 2z

(s )

s that: Lp@) %, ir) =

" k

ues

Pllc/lm(rz) Y;c, m(T2)- (5.29)

This means that a function on one centre can be expanded in terms of a set of similar functions
on another centre, so that it is possible to reduce the two-centre terms appearing in (5.12) to
purely one-centre terms.

Though the summation is infinite, in practice it converges fairly rapidly providing P(r,) is
not too localized.

(ii1) Density and potential function expansions

It was mentioned in the previous section that because the orbital radial functions are held
as a table of discrete values, it is more efficient computationally to add the radial functions
together, wherever possible, and then integrate over the sum, rather than sum the result of
many separate integrations over the original orbitals. Therefore, instead of evaluating (5.13)
by using the result derived in §5¢ (ii) for the two-centre terms, the summation is moved inside
the integration to form a combined density function, which is then integrated to obtain the
potential.

Each one-centre orbital, |2, .. >, in equation (5.13) is a four-component function:

nKm

P (r,) <m—g31im> ¥} s
1 Pm(r,u) <%m+%—%|.]m> Y;,m+é
IQﬂKm> = 7 . 1 . » (530)
~ ZQm(T”) <l+a§m—l2% IJm> Yl+a, m—%

iQm (r,u) <l+ além +%—% IJm> Yl+a, m+3
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where j = [+}aand a =+1fork < 0and a = —1 for k > 0. If|2,,,,> is moved to the second
centre by using (5.29), it is expressed as

S Pley(r) Yomey(r,)

s= |m—1| “
s %"’H P”lm+1( ) Ysm+é(r//)

12m> =1 : (5.31)
1 o E:n——l[ Qsl+am—1( /4) Y;m~%(r//)

i Z Qsl+am+~‘( ,u) Ysm+é(r,u’)

s=|m+}|

The density D is now defined as

D = 2’5 ? % %: Ql’lk/LKma bu'k'my* (5‘32)
This is evaluated by considering each component in turn. Then, for each one-centre term
(w = '), one integrates over the spin function (which yields unity), multiplies the radial
functions together and uses the spherical harmonic product rule to express the angular function
as a sum of individual spherical harmonics. Any coefficients are combined with the new radial
function. For example:

1

—Fa(r) Kladma = limd YE, m (1) = B (1) <lysmy =3 jm) Xy, 3(7,)
" " lot+ly
= 5 Dy 7)Y, my—my (Fu)>  (5.33)
1=,y
where:
_ P (r) B(r) (20, + 1)} (2zb+1)%( L, L, 1 )(za L, 1)
Diln) = " (20+1) —mg my myg—my,)\0 00/ (5.34)

The results (5.33) for each term are combined into two separate series (one for each centre)
by summing all of the radial functions associated with a unique spherical harmonic.

The two-centre terms are dealt with in a similar fashion. One component function in each
product

(/) B (r) Y m—s(r) (U/7,) By (1) By (2 (5.35)

is chosen to be expressed on the second centre (the criteria behind this choice are described
in §5d). This gives an infinite sum of one-centre terms. For example, if function «a is chosen to

ar M

be moved to centre ', then the term (5.35) becomes

[e 0]
% PY m () Yy () — B (re) By o, i (P), (5.36)
s=|my,—4| w
which yields a similar result to (5.33), except that the summation involves an infinite series
of spherical harmonics and 1/ Ty is omitted from (5.34).
Each two-centre term is added to the appropriate one-centre series formed from the
one-centre terms. Each of the four components yields a separate pair of series. However, all
of the spherical harmonics in all the series have the same m index value (m;,—m,), so that the
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four individual series on each centre can be combined into a single series. The resulting density
function, D®, therefore has the form

e8]
Dab — Z Z Dab Y,

I, my—mg,
pol=lmy—mgy|

(r,), (5.37)

where D;‘/f is the radial function associated with the spherical harmonics ¥, on centre y.

The potential function (5.13) can now be calculated from the density:

y Mp=—My

(Bymlrillpemy =% 3 TDM( ) Yt mp-m, (1) d€2. (5.38)
u l=lme—my| J 12
Each term in the right side of (5.38) is evaluated by using the one-centre methods described
in §5a (expression (5.4) for 77} is used and the one-centre potential integrals (5.6) computed
numerically). The terms combine to give a new series for the potential,

(Gymlritipmy =% 3 Vi (r) X, memmy () (5.39)
143 l= Imc"mb|
where V”c( r,) is the radial function formed by summing all of the radial potentials associated
with the same spherical harmonic.
The general repulsion integral is now simply given by:

(Bumalldymylridlgom,> pgmsd = D4 Virm) X, mp—m, (r,) A2

p l=lmo—my]

e8]
=2 X > DE ) Y, mgmmg (M) Ve (1) Yo, om, (7,,) A2 (5.40)
Y ,u l=|md-ma| 1 ]mc mb§
The one-centre terms in (5.40) are calculated by using the numerical methods described in
§5a. The two-centre terms are calculated by using methods described in §54d.

(d) Numerical methods for two-centre integrals

Unlike one-centre integrals, it is not possible to simplify two-centre integrals directly by using
angular momentum techniques. Each component has to be integrated separately, so that for
the overlap integral, four separate integrations are required. Each integration takes the form

1= [y 00 B8y, L ar, (5.41)
where F, and Y, , areon centre 1 and K, and ¥, ,, are on centre 2; r; and r, refer to the
position of the electron relative to centres 1 and 2 respectively, as shown in figure 1. Integrals
with the same form as (5.41) also occur in the evaluation of electron repulsion integrals over
orthonormal orbitals (5.40).

The following method for the numerical evaluation of (5.41) was adopted after considerable
experiment. It has been found to be accurate, efficient and very reliable.

By first integrating analytically over coordinate ¢, this integral becomes

R E,(ry) T
By (ry "’y
1=on [T " B, 005106, 00 gt by (542
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where the @s are associated Legendre polynomials, and r,7,/R is the Jacobian for the
coordinate system, based on 7, and r, and ¢. The logarithmic coordinates on which r, and r,
are based are

ro=r, ety o, =1, et (5.43)
and the integral (5.42) becomes:
© tt
! T
1= f ft‘ Fy(ry) @la, ma(el) Fy(r,) @l,,, my, _IR?‘Z‘dtl di, 8ma my (5.44)
where i = 1/hIg[(R+ry)/n ], = 1/hIgI[(R=ry)/r,]l. (5.45)

Unfortunately, the integral (5.44) is not symmetric in the coordinates ¢, and ¢,: the integration
is on half-circles about centre 2 as ¢, goes from — o0 to +ao0. The use of this form as a basis
for numerical integration gives unreliable results because the integration is very coarse near
centre 1, from where a large contribution to the integral is expected to come. The problem
is avoided by dividing the integration range into several symmetric areas. -

te t te tF o [t o (tF
I= f f Xdt, dt,+ f Xdt, dt, + f Xdt, dt,+ J Xdt,de,, (5.46)
-0 J by

- J 7 te Jt, te J b,
where t,=1/hlg (R/2r,),
ty = 1/h1g[(R+n)/r], & = 1/hIg|[(R—n)/r,]l
X =21 F, (1) Oy, 1, (01) Fy(r3) Oy, 1, (05)- (5.47)

In physical terms, one integrates about each centre separately, over the volume extending
from the plane z = 0 to z = 4 00 for centre 1 and over the volume extending from z = 0 to
z = — oo for centre 2.

The integrals in (5.46) are calculated with 24 x 24 point Gauss quadrature, with the use of
sixth-order Legendre interpolation to obtain the values of F, and F, at the quadrature points.
The integration range is limited to 0 < ¢,,4, < 400; F, and F, are always < 10~? for ¢ = 400,
and by omitting the nucleus regions 7, < r, and r, < r, negligible errors are obtained.

Because integrals involving numerical relativistic orbitals on more than one centre have not
been previously calculated, the integration scheme was tested by calculating integrals over
non-relativistic Slater orbitals. Slater orbitals were chosen because they have the same
long-range behaviour as relativistic orbitals and because integrals involving them can be
evaluated to high precision by using the ALCHEMY molecular integrals program.

The number of points in the Gaussian quadrature was chosen by doing several tests with
an increasing number of integration points. In each test, a large number of integrals of the form
(5.41), including a wide range of spherical harmonics, were calculated. It was found that with
24 x 24 point Gaussian quadrature, all of the integrals had a precision of better than nine
decimal places, so all subsequent calculations were done with this number of integration points.

The expansion of orbitals on a second centre was tested in a similar fashion by calculating
exchange integrals involving Slater orbitals, i.e. integrals of the form

1= ¢ bl ri3lic $o2» (5.48)

where orbitals @; and ¢; are on centre 1 and orbitals @, and ¢, are on centre 2. For simple
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individual integrals such as (5.48), it is only necessary to move one function, and all of the
test integrals were calculated in this way. However, the method developed in §5¢ requires in
general that two orbitals be moved, but the results discussed below will show that the
underlying method is sound.

The test calculations showed that it is better to move a diffuse function, rather than a
contracted one, because far more terms with high angular momentum quantum values are
required to fit a sharply peaked function situated away from the expansion centre. It was found
that provided the more diffuse orbital of the pair of orbitals occupied by one electron was
moved, an expansion including terms up to / = 17 always gave results accurate to at least six
decimal places. Integrals involving two contracted orbitals are not in fact a problem, since the
overlap between the orbitals is small and the integral correspondingly tiny.

The correctness of the complicated programming of RIP as a whole and the accuracy of the
numerical methods were tested by calculating the interaction energy between inert gas atoms,
with the use of exact non-relativistic atomic Hartree—Fock wavefunctions. The detailed results
are given by Wood & Pyper (1981¢). Thus, for the neon dimer, the interaction energies agree
with those computed by Gilbert & Wahl (196%) from the traditional basis set methods of
quantum chemistry, to within 0.0003 a.u., except at the shortest separation, R = 2.5 a.u.,
where the discrepancy is slightly greater. These discrepancies can be ascribed to the deviation
of the Gilbert & Wahl basis-set atomic functions from those at the exact non-relativistic
Hartree-Fock limit. For example, at R = 3.5 a.u., Gilbert & Wahl found an interaction energy
of 0.0301 a.u., compared to 0.0303 a.u. found in the present calculations by using the exact
non-relativistic Hartree-Fock wavefunctions. However, when this interaction energy was
calculated from the present program but inputting the Gilbert & Wahl wavefunctions, this
small discrepancy disappeared completely. In this calculation the small components were set
to zero, and the matrix elements of the non-relativistic kinetic energy operator were calculated
by using the same numerical methods. Although it is not the purpose of this paper to present
results of RIP calculations for diatomic molecules, it should be noted that the program has
been further tested by using it to compute non-relativistic self-consistent field wavefunctions
of near Hartree—I'ock quality for first-row hydrides. These calculations, to be reported in detail
elsewhere, were performed simply by increasing the value of ¢ used both in the RIP program
and in the Oxford Dirac-Fock program used to generate the input atomic wavefunctions.

6. APPLICATION TO IONIC SOLIDS
(a) Method

The RIP program provides the means for undertaking a non-empirical study of ionic solids
containing the heaviest ions. It is shown in the companion paper (Pyper 1986) that it is useful
to regard the crystal as being formed from its constituent ions in two stages. In the first stage
the isolated free ions are modified to a non-stationary state. In the second stage these modified
ions are assembled to form the crystal with the correct structure but with closest cation—anion
separation (R) not, in general, equal to the equilibrium value (R,). The crystal structure
parametrized by closest cation—anion separation (R) differs from the equilibrium cubic
structure solely by a uniform contraction or expansion of the entire crystal. If all effects arising
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from electron correlation are neglected, the binding energy (U} (R)) per formula unit of crystal
CA,, (composed of cations C and anions A, relative to the free ions is given by
UL(R) = = M/R+ncs Vica(R) +1ncc Vico(xec R) +mnys Viaa(xas R)]
+EG(R)+mES(R). (6.1)
Here, M is the Madelung constant, n,,, is the number of nearest b ions around each a ion and
Xy, relates the distance (x,, R) between the closest pair of ions a to the distance R. The quantity
E&.(R) is the rearrangement energy needed to convert a free ion a to the non-stationary state
that subsequently minimizes the (negative) binding energy U} (R). Thus the second line of (6.1)
is the total energy required in the first of the two stages into which it is useful to decompose
the binding energy. The former energy is readily computed by using the Oxford Dirac-Fock
program (Grant et al. 1980) from the Dirac-Fock wavefunctions of both the free ions and the
ions in their non-stationary states. The energy change upon assembling the ions in their
non-stationary states to form the crystal is given by the first line of (6.1) if the energy of
interaction of each pair of ions, excepting the closest cation—anion, cation—cation and anion—
anion pairs, is taken to have the purely coulombic form ¢, ¢, /(x,, R) with ¢, the charge of
ion a. The energy (V3 (x,, R)) of the pair of ions a and b, separated by a distance x,,, R relative
to that of the infinitely separated pair of ions in their non-stationary states, can be computed
by using the RIP program, being the quantity AEILL, (equation (3.31)). It is convenient to
decompose this energy into a point-coulombic plus a short-range term V3, (x,, R), appearing
in (6.1) through
Va,ob (xab R) = Vsﬂa,b (xa,b R) + 9a Qb/ (xa,b R) . (6'2)

The contribution to the crystal binding energy which arises from electron correlation can
be decomposed (Pyper 1986) into a sum of short-range corrections to the potentials V&, (x,, R),
plus a long-range term (Ugf, (R)) composed of the dispersive (London) attractions between
the ions. The binding energy (Up,(R)) including correlation is given by

Up(R) = UL(R) +ngp ViEX (R) +3lnce VsdE (xoe B) +mny s ViRR (xaa R)]+ Ugisp(R). (6.3)

Here V3™ (x,, R) is the correction to V&, (R) arising from that part of the electron correlation
that is non-zero solely by virtue of the overlap between wavefunctions of the pairs of ions a
and b. These terms are negligible except for the closest cation—anion, cation—cation and
anion—anion pairs for which they can be calculated from the electron densities of the ions by
using density functional theory based on the uniform electron gas (Gordon & Kim 1972).
The crystal dispersion energy (Ugf,(R)) is taken to be the sum of the dipole-dipole and
dipole—quadrupole dispersive attractions between all the pairs of ions in the crystal (Pyper

1986). It is given by
Udlsp(R) = = 2 {5, (CA) C,(CA) +3[5,(CC) €, (CC) +m S, (44) Cp(AA) [} BT, (6.4)

where C4(XY) and Cy(XY) are the dipole—dipole and dipole-quadrupole dispersion coefficients,
yielding the respective attractions between a pair of ions X and Y as —Cy(XY)/R% and
—Cy(XY)/R% . The derivation of these coefficients is described in the companion paper
(Pyper 1986). Each quantity §,(XY) is a purely geometrical constant reported elsewhere
(Pyper 1986), which results from the dispersive attractions dependent on C, (XY) summed
over all the ions in the crystal. The form (6.4) neglects the damping of the dispersion energy
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arising from overlap of the ion wavefunctions. Overlap invalidates the multipole expansion
required to derive the standard long-range form (6.4) for the dispersion energy (Kreek &
Meath 1969; Jacobi & Csanak 1975).

The closest cation—anion separation (R,), the lattice energy (— U (R,)) and bulk com-
pressibility (B) can be predicted from the function Uy (R). The compressibility, defined by

B = (Vd*Uy,(R)/dV?) g_p,;
with V the molecular volume, is given by
B = (9k,R,)"" (d*Uy(R)/dR*) p_p,, (6.5)

where £, is the constant relating V to R through V = k, R3). Each value of B was derived by
using the R, value predicted from the same calculation.

(b) Results
(1) Introductory

For five ionic crystals, this subsection presents the lattice energies, closest equilibrium
cation—anion separations (R,) and compressibilities predicted from (6.1) or (6.3) by using
the RIP program to calculate exactly the uncorrelated short-range interactions (V94 (R)).
These crystal properties are largely determined by the interplay between this potential and
the Madelung energy because the remaining short-range interactions (V24 ,(¥ss R) and
V& (xcc R)) involve pairs of ions at considerably greater internuclear separations. Since these
remaining interactions are considerably smaller than V&, (R), they were calculated from
the modification (Lloyd & Pugh 1977) of electron gas theory (Gordon & Kim 1972) in which
the exchange contribution to the interaction energy is corrected by a Rae-type factor (Rae 1974,
1975) calculated from the total number of valence electrons on both ions. Each ion was taken
to contribute eight electrons to this number except for Li*, Ag* and Pb?* which were taken
to contribute two, ten and twelve electrons respectively (Wood & Pyper 1981¢).

The short-range potentials V2, (R) are reported in the Appendix.

(i1) Computations with free ton wavefunctions

Three main conclusions can be drawn from the results, presented in table 1, of calculations
in which the wavefunctions of the free isolated ions are used to compute the short-range
interactions (6.2) and (6.3).

First, the insufficient crystal cohesion for LiF, NaF and NaCl predicted (table 1) both with
and without correlation and the undamped dispersion energy (6.4) shows that it is not sufficient
to use free ion wavefunctions to calculate the short-range potentials. Hence the modifications
of the ion wavefunctions caused by the crystalline environment must be considered if the crystal
properties are to be described accurately. Although the dispersion energies calculated from
(6.4) neglecting the corrections arising from the overlap of the ion wavefunctions will be too
attractive (Kreek & Meath 1969; Jacobi & Csanak 1975), these energies are sufficiently small
for LiF, NaF and NaCl that the overestimation of the dispersion does not mask the errors
caused by the use of free ion wavefunctions.

The second conclusion to be drawn from the results with free ion wavefunctions is that the
damping of the dispersion energy caused by the overlap of the ion wavefunctions cannot be
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TABLE 1. PREDICTIONS OF CRYSTAL PROPERTIES FROM FREE ION WAVEFUNGTIONS(!)

theory
no correlation with correlation
all 772 plus all
Via(R) (equation V?; no equation

system only® (6.1)) dispersion® (6.3) experiment
LiF D, 973 928 944 964 1036@

R, 4.05 431 4.24 4.15 3.80®

B 5.80 3.49 443 5.53 6.98® 7.2 867G 9
NaF D, 880 863 880 908 923 93100

R, 457 4.68 4.62 4.50 4.386)

B 4.31 4.31 4.58 4.93 5.144D 5 1700
NaCl D, 718 701 720 749 77302 786

R, 5.64 5.82 5.72 5.55 5.3300

B 1.93 1.85 2.08 2.35 2.6610 27409
AgF D, 848 834 870 1040 94203

R, 4.85 4.95 4.85 4.36 4.661

B 4.60 4.43 5.19 9.13 —
PbF, D, 2239 2201 2248 2395 249102

R, 5.13 5.26 5.17 4.87 4.8609

B 4.38 4.04 4.49 5.89 6.0819 6,277

(1) The D, lattice energy values are in kilojoules per mole; R, in bohr; B in 10'* newtons per square metre
extrapolated to low temperature, except PbF,.

(2) Computed, including only nearest-neighbour cation-anion uncorrelated short-range interaction, i.e.
UR(R) = —M/R-+ngy Vioa(R).

(3) Computed, including the short-range overlap-dependent correlation energy but excluding dispersion, i.e.
from equation (6.3) with U§fi,(R) omitted.

(4) Weast (1979).
) Muhlhausen & Gordon (1981).
) Briscoe & Squire (1957).
) Kittel (1966).
)} Susse & Rech (1961).
} Cohen & Gordon (1975).
) Vallin et al. (1966).
) Lewis et al. (1967).
) Johnson (1968).
) Tosi (1964).
) Firgate & Scheule (1966).
) Landolt-Bornstein (1973).
) Samara (1976).
) Rimai & Sladek (1980).

neglected. Thus the cohesion of AgF is seriously overestimated (table 1), as manifested by the
too-large lattice energy and too-small R, predicted when the dispersion energy is included in
its undamped form (6.4). It is shown below that, for PbF,, the agreement between experiment
and the calculation with the undamped dispersion energy is fortuitous. This fortuitous
agreement arises because the overestimation of the short-range repulsions (6.2) computed with
the use of free ion wavefunctions cancels the overestimation of the attraction predicted by the
undamped dispersion series.

The third conclusion shown by the computations with free ion wavefunctions is that the
approximation previously used (Léwdin 1956 ; Froman & Lowdin 1962 ; Mansikka & Bystrand
1966; Vallin et al. 1967), which involved neglecting integrals involving charge densities
constructed as products of different atomic orbitals belonging to the same ion, can yield
misleading results. Comparison (table 2) with the present exactly computed results shows that
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TABLE 2. COMPARISON OF CRYSTAL PROPERTIES PREDICTED BY USING EXACT UNCORRELATED
SHORT-RANGE INTERACTIONS WITH PREDICTIONS OF UPPSALA APPROXIMATIONS(I)

LiF NaF NaCl
D, R, B D, R, B D, R, B
Lowdin (1956) 928 3.97 7.77 — — — 762 — —
later Uppsala® 1003 3.89 5.9 952 4.20 5.0 763 5.1 2.54
RIP (Exact) 973 4.05 5.8 880 4.57 4.31 718 5.64 1.93

(1) All calculations used free ion wave functions and included only the uncorrelated short-range interaction
between the closest cation—anion pairs, i.e. U}(R) = —M/R+61V2,(R).

(2) LiF (Mansikka & Bystrand 1966), NaF (Vallin et al. 1967), NaCl (Petterson et al. 1967). Froman & Lowdin
(1962) report D, = 765 kJ mol™* for NaClL

use of these approximations overestimates the cohesion of LiF, NaF and NaCl calculated by
including only the nearest cation—anion uncorrelated short-range interaction. These discrep-
ancies are particularly severe for NaF. The failure of these approximations is also shown by
the prediction (Hayns & Calais 1973) of 927 kJ mol™ for the crystal binding energy of AgF
at R = 4.649 a.u., compared with the result of 848 k] mol™! (column 1 of table 1) obtained
when Vi, (R) is computed exactly from the free ion wavefunctions.

(iii) Computations with tons calculated in a Watson potential

The conclusion of the previous section, that the environmentally induced modifications of
the ion wavefunctions cannot be neglected, motivates examination of the previously suggested
method (Watson 1958; Pachalis & Weiss 1969 ; Schmidt ¢t al. 1978) of simulating the environ-
mental effects by means of the potential (Watson potential) arising from a shell of charge. In
this method the ion wavefunctions are computed by adding to the free ion Dirac—Fock
hamiltonian the electrostatic potential (the Watson potential) generated by a spherical shell
of charge equal to the ionic charge but of opposite sign and having a radius equal to the ionic
radius. Three main conclusions can be drawn from the results presented in table 3 of this series
of calculations.

First, comparison of the first three columns of table 3 with those of table 1 shows that use
of wavefunctions computed in the Watson potential predicts significantly greater crystal
cohesion than the use of free ion wavefunctions. The variation principle can be used to test
the quality of a wavefunction which describes a state containing only electrons and no
positrons, when used to approximate the wavefunction of another system. It can therefore be
concluded that use of the Watson potential is preferable to the neglect of environmentally
induced wavefunction modifications.

The second conclusion, shown by the underestimation of the crystal cohesion (column 3)
without the inclusion of dispersion, is that the dispersion contribution to the lattice energy
should not be neglected. The discrepancies between the predictions of column 3 of table 3 and
experiment correlate with the expected magnitudes of the dispersion contributions suggested
by the Cg and Cg coefficients used, which are reported in table 4 of Pyper (1986). However,
the results including dispersion (column 4 of table 3) for NaF, and particularly AgF, reinforce
the conclusion drawn from the calculations with free ion wavefunctions that the damping
of the dispersion arising from ion wavefunction overlap cannot be neglected.

The third conclusion that can be drawn from the results of table 3 is that use of the Watson
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TABLE 3. PREDICTIONS OF CRYSTAL PROPERTIES FROM ION WAVEFUNCTIONS COMPUTED
BY USING A WATSON SHELL MODEL(

theory
no correlation with correlation
all 172 plus all
Vica(R) (equation Vd; no equation
only® (6.1)) dispersion (6.3) experiment

LiF D, 1018 976 991 1017 1036

R, 3.90 4.09 4.05 3.98 3.80

B 7.59 7.23 7.98 9.01 6.98, 7.2, 8.67
NaF D, 905 894 908 942 923

R, 4.45 4.54 4.48 4.36 4.38

B 5.07 5.13 5.43 6.13 5.14, 5.17
NaCl D, 738 722 738 773 773, 786

R, 549 5.65 5.57 5.40 5.33

B 2.38 2.32 2.54 2.94 2.66, 2.74
AgF D, 859 838 877 1066 942, 953

R, 4.74 4.87 4.77 4.30 4.66

B 5.40 5.26 6.12 11.40 —
PbF, D, 2258 2201 2276 2498 2491

R, 4.80 4.95 4.86 4.57 4.86

B 7.37 6.83 7.89 10.45 6.08, 6.27

(1) For definitions, units and sources of experimental data see notes to table 1.
(2) Computed by using only the nearest-neighbour cation—anion uncorrelated short-range interaction, i.e.

UL(R) = — M/R+ncs Vica(R) + ERe(R) +mEge(R).

potential model does not always satisfactorily describe the environmentally induced
modifications of the ion wavefunctions, and hence that this model should be regarded as
unsatisfactory. Thus, for PbF, without dispersion, the Watson model exactly predicts the
experimental R, value while seriously underestimating the lattice energy and overestimating
the compressibility (column 3). This combination of discrepancies with experiment is highly
unphysical, indicating a basic failure of the calculation. Furthermore, because any inclusion
of dispersion must reduce the predicted value of R, the agreement between the theory without
dispersion and experiment must be regarded as fortuitous. The combination of excellent
agreement between calculated and observed lattice energy, gross overestimation of the
compressibility, and underestimation of R, shown by the PbF, calculation with undamped
dispersion, is also highly unphysical. The lower energy predicted by this calculation compared
with the corresponding one (column 4 of table 1), which uses free ion wavefunctions, shows
that the agreement between the experimental and calculated R, value of the latter (table 1)
calculation was fortuitous.

7. CONCLUSION

The basic formalism and numerical methods used in the RIP program to perform fully
relativistic ab initio calculations for diatomic molecules have been described. The method of
constructing the molecular wavefunction from Dirac-Fock atomic orbitals incorporates the
properties of the isolated atoms to the greatest extent. This obviates the need for large basis
sets to describe the core orbitals in the molecule, which are essentially unchanged from the
atoms, thereby allowing the heaviest systems to be studied.

The program has been used to initiate a non-empirical study of ionic crystals containing
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the heaviest ions. This was not possible before the development of the RIP program because the
interactions involving heavy ions showing large relativistic effects could not be computed. The
results have both revealed the deficiencies of current methods for describing the influence of
the crystalline environment on the ion wavefunctions and shown that it is unacceptable to
neglect the damping of the interionic dispersion energy originating from non-negligible overlap
of the ion wavefunctions (Kreek & Meath 1969). Methods for rectifying these two deficiencies
to produce a physically sound and reliable method for studying ionic crystals are reported in
the companion paper (Pyper 1986).
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APPENDIX

TABLE 4. UNCORRELATED SHORT-RANGE CATION—ANION INTERACTIONS COMPUTED WITH
THE RIP PrOGRAMY

LiF NaF NaCl
R free Watson free Watson free Watson
, 2.75 0.11539 0.10375 — — — —
P 3.0 0.07028 0.06073 0.15657 0.14769 e —
TN 4 3.5 0.02724 0.02119 0.05716 0.05079 — —
. | 3.75 0.01728 0.01259 — — — —
< 4.0 0.01107 0.00749 0.02209 0.01791 0.08104 0.07469
> > 4.25 — — 0.01398 0.01070 0.03586 0.03109
o = 4.5 0.00467 0.00267 0.00895 0.00641 — —
Y - 5.0 0.00203 0.00095 0.00381 0.00231 0.01622 0.01299
— 5.25 — — — — 0.01098 0.00840
=0 5.5 0.00090 0.00034 0.00166 0.00085 0.00750 0.00542
: O 6.0 — — 0.00074 0.00031 0.00354 0.00226
=w 6.5 — — — — 0.00170 0.00097
- 7.0 — — — — 0.00083 0.00040
5 Z 7.5 — — — —_ 0.00040 0.00017
Eg AgF PbF,
8 (@) 6 free Watson free Watson
8 5) 3.5 0.10758 0.09907 e —
= <Zt 4.0 0.03580 0.03016 0.09331 0.06586
T 4.5 0.01273 0.00927 0.04211 0.02493
Sl 4.75 0.00761 0.00500 0.02871 0.01523
5.0 0.00463 0.00268 0.01965 0.00915
5.5 0.00172 0.00069 0.00934 0.00305
6.0 0.00059 0.00009 0.00448 0.00076
6.5 — — 0.00219 0.00003

(1) All measurements in atomic units; V3, (R) defined by equation (6.2).

TABLE 5. REARRANGEMENT ENERGIES FOR IONS COMPUTED IN POTENTIAL
OWING TO A WATSON sHELL(V

o Lit Na* Agt Pp** F- Cl-

:j‘\\ig‘ 0.00074 0.00091 0.00645 0.07116 0.00440 0.00321

< (1) Here, Eg,(R) (equation (6.1)); for Watson shell, rearrangement energies are independent of R; all values
— > in atomic units.

O H

3=

= O

LT O
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